enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields. The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.

  3. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The Riemann hypothesis is one of the most important conjectures in mathematics.It is a statement about the zeros of the Riemann zeta function.Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.

  4. Bernhard Riemann - Wikipedia

    en.wikipedia.org/wiki/Bernhard_Riemann

    The Riemann hypothesis was one of a series of conjectures he made about the function's properties. In Riemann's work, there are many more interesting developments. He proved the functional equation for the zeta function (already known to Leonhard Euler ), behind which a theta function lies.

  5. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of ⁠ 1 / 2 ⁠.

  6. Grand Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Grand_Riemann_hypothesis

    In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L -functions lie on the critical line 1 2 + i t {\displaystyle {\frac {1}{2}}+it} with t {\displaystyle t} a real number variable and i {\displaystyle i} the ...

  7. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  8. Local zeta function - Wikipedia

    en.wikipedia.org/wiki/Local_zeta_function

    In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = ⁡ (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.

  9. L-function - Wikipedia

    en.wikipedia.org/wiki/L-function

    The Riemann zeta function is an example of an L-function, and some important conjectures involving L-functions are the Riemann hypothesis and its generalizations. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.