Search results
Results from the WOW.Com Content Network
Cauchy boundary conditions are simple and common in second-order ordinary differential equations, ″ = ((), ′ (),), where, in order to ensure that a unique solution () exists, one may specify the value of the function and the value of the derivative ′ at a given point =, i.e.,
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]
A boundary condition which specifies the value of the normal derivative of the function is a Neumann boundary condition, or second-type boundary condition. For example, if there is a heater at one end of an iron rod, then energy would be added at a constant rate but the actual temperature would not be known. If the boundary has the form of a ...
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.
In mathematics, Fuchs' theorem, named after Lazarus Fuchs, states that a second-order differential equation of the form ″ + ′ + = has a solution expressible by a generalised Frobenius series when (), () and () are analytic at = or is a regular singular point.
Explicit formulas for eigenvalues and eigenvectors of the second derivative with different boundary conditions are provided both for the continuous and discrete cases. In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid.
In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. [1] When imposed on an ordinary or a partial differential equation , the condition specifies the values of the derivative applied at the boundary of the domain .
Spectral theory for second order ordinary differential equations on a compact interval was developed by Jacques Charles François Sturm and Joseph Liouville in the nineteenth century and is now known as Sturm–Liouville theory. In modern language, it is an application of the spectral theorem for compact operators due to David Hilbert.