Search results
Results from the WOW.Com Content Network
A geostationary orbit, also referred to as a geosynchronous equatorial orbit [a] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.
A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi). [1] A special case of geosynchronous orbit is the geostationary orbit (often abbreviated GEO), which is a circular geosynchronous orbit in Earth's equatorial plane with both inclination and eccentricity equal to 0. A satellite in a geostationary orbit remains in ...
The following are some of the more common ones. A synchronous orbit around Earth that is circular and lies in the equatorial plane is called a geostationary orbit. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a geosynchronous orbit.
Thus, a geostationary orbit is defined as a geosynchronous orbit at zero inclination. Geosynchronous (and geostationary) orbits have a semi-major axis of 42,164 km (26,199 mi). [10] This works out to an altitude of 35,786 km (22,236 mi). Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). High Earth ...
In case of using the Hohmann transfer orbit, only a few days are required to reach the geosynchronous orbit. By using low-thrust engines or electrical propulsion, months are required until the satellite reaches its final orbit. The orbital inclination of a GTO is the angle between the orbit plane and the Earth's equatorial plane.
Clickable image, highlighting medium altitude orbits around Earth, [a] from Low Earth to the lowest High Earth orbit (geostationary orbit and its graveyard orbit, at one ninth of the Moon's orbital distance), [b] with the Van Allen radiation belts and the Earth to scale To-scale diagram of low, medium, and high Earth orbits Space of Medium Earth orbits (MEO) as pink area, with Earth and the ...
A special case of the geosynchronous orbit, the geostationary orbit, has an eccentricity of zero (meaning the orbit is circular), and an inclination of zero in the Earth-Centered, Earth-Fixed coordinate system (meaning the orbital plane is not tilted relative to the Earth's equator). The "ground track" in this case consists of a single point on ...
A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to ground observers. Popularly or loosely, the term "geosynchronous" may be used to mean geostationary. [1] Specifically, geosynchronous Earth orbit (GEO) may be a synonym for geosynchronous equatorial orbit, [2] or geostationary Earth orbit. [3]