Search results
Results from the WOW.Com Content Network
The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs).
The scattering amplitude is evaluated recursively through a set of Dyson-Schwinger equations. The computational cost of this algorithm grows asymptotically as 3 n, where n is the number of particles involved in the process, compared to n! in the traditional Feynman graphs approach. Unitary gauge is used and mass effects are available as well.
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams .
The Maris-Tandy model can be applied to solve for the structure of pions, kaons, and a selection of vector mesons from the homogeneous Bethe-Salpeter equation [1]. [2] It can also be used to solve for the quark-photon vertex from the inhomogeneous Bethe-Salpeter equation, [3] for the elastic form factors of pseudoscalar mesons, [4] [5] and for the radiative transitions of mesons. [6]
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
Bargmann–Wigner equations; Schwinger-Dyson equation; Renormalization group equation; ... Archived from the original (PDF) on 2017-05-10 This page was ...
Julian Schwinger, winner of the 1965 Nobel Prize in Physics.Original caption: "His laboratory is his ballpoint pen." Julian Seymour Schwinger (/ ˈ ʃ w ɪ ŋ ər /; February 12, 1918 – July 16, 1994) was a Nobel Prize-winning American theoretical physicist.
These directly corresponded (through the Schwinger–Dyson equation) to the measurable physical processes (cross sections, probability amplitudes, decay widths and lifetimes of excited states) one needs to be able to calculate. This revolutionized how quantum field theory calculations are carried out in practice.