Search results
Results from the WOW.Com Content Network
The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs).
The scattering amplitude is evaluated recursively through a set of Dyson-Schwinger equations. The computational cost of this algorithm grows asymptotically as 3 n, where n is the number of particles involved in the process, compared to n! in the traditional Feynman graphs approach. Unitary gauge is used and mass effects are available as well.
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams .
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirō Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
Dyson says that the report showed that, even from a narrow military point of view, the US was better off not using nuclear weapons. [83] Dyson opposed the Vietnam War, the Gulf War and the invasion of Iraq. He supported Barack Obama in the 2008 US presidential election and The New York Times described him as a political liberal. [7]
Julian Schwinger, winner of the 1965 Nobel Prize in Physics.Original caption: "His laboratory is his ballpoint pen." Julian Seymour Schwinger (/ ˈ ʃ w ɪ ŋ ər /; February 12, 1918 – July 16, 1994) was a Nobel Prize-winning American theoretical physicist.
Yeats is the author of the books Rearranging Dyson–Schwinger Equations (Memoirs of the American Mathematical Society, 2011) [7] and A Combinatorial Perspective on Quantum Field Theory (Springer, 2017). [8]
These directly corresponded (through the Schwinger–Dyson equation) to the measurable physical processes (cross sections, probability amplitudes, decay widths and lifetimes of excited states) one needs to be able to calculate. This revolutionized how quantum field theory calculations are carried out in practice.