Search results
Results from the WOW.Com Content Network
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another. Simplistic string metrics such as Levenshtein distance have expanded to include phonetic, token , grammatical and character-based methods of statistical comparisons.
In computing, the utility diff is a data comparison tool that computes and displays the differences between the contents of files. Unlike edit distance notions used for other purposes, diff is line-oriented rather than character-oriented, but it is like Levenshtein distance in that it tries to determine the smallest set of deletions and insertions to create one file from the other.
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.
A code is defined to be equidistant if and only if there exists some constant d such that the distance between any two of the code's distinct codewords is equal to d. [4] In 1984 Arrigo Bonisoli determined the structure of linear one-weight codes over finite fields and proved that every equidistant linear code is a sequence of dual Hamming codes .
Any similarity between the two documents above the specified minimum will be reported (if detecting moves is selected). This is the main difference between Diff-Text and most other text comparison algorithms. Diff-Text will always match up significant similarities even if contained within non-identical or moved lines.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]