Search results
Results from the WOW.Com Content Network
Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. [1] Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).
Free-living embryos do not grow in mass as they have no external food supply. But embryos fed by a placenta or extraembryonic yolk supply can grow very fast, and changes to relative growth rate between parts in these organisms help to produce the final overall anatomy.
Living things require energy for homeostasis and other activities. Growth: maintenance of a higher rate of anabolism than catabolism. A growing organism increases in size and structure. Adaptation: the evolutionary process whereby an organism becomes better able to live in its habitat. [18] [19] [20]
This leads to growth in multicellular organisms (the growth of tissue) and to procreation (vegetative reproduction) in unicellular organisms. Prokaryotic cells divide by binary fission, while eukaryotic cells usually undergo a process of nuclear division, called mitosis, followed by division of the cell, called cytokinesis.
Biochemistry is the study of chemical processes within and relating to living organisms. Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including molecular synthesis, modification, mechanisms, and interactions.
An organism is any living thing that functions as an individual. [1] Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have been proposed to define what an organism is.
The slope of this line is the specific growth rate of the organism, which is a measure of the number of divisions per cell per unit time. [5] The actual rate of this growth (i.e. the slope of the line in the figure) depends upon the growth conditions, which affect the frequency of cell division events and the probability of both daughter cells ...
Living things require energy to maintain internal organization (homeostasis) and to produce the other phenomena associated with life. Growth: maintenance of a higher rate of anabolism than catabolism. A growing organism increases in size in all of its parts, rather than simply accumulating matter.