Search results
Results from the WOW.Com Content Network
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.
A mask is data that is used for bitwise operations, particularly in a bit field. Using a mask, multiple bits in a Byte, nibble, word (etc.) can be set either on, off or inverted from on to off (or vice versa) in a single bitwise operation. More comprehensive applications of masking, when applied conditionally to operations, are termed predication.
Below pseudocode describes the process of above multiplication. It keeps only one row to maintain the sum which finally becomes the result. Note that the '+=' operator is used to denote sum to existing value and store operation (akin to languages such as Java and C) for compactness.
Finally, multiplication of each operand's significand will return the significand of the result. However, if the result of the binary multiplication is higher than the total number of bits for a specific precision (e.g. 32, 64, 128), rounding is required and the exponent is changed appropriately.
Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...
Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation. An additional use of masking involves predication in vector processing, where the bitmask is used to select which element operations in the vector are to be executed (mask bit is ...
In Java, the class BitSet creates a bit array that is then manipulated with functions named after bitwise operators familiar to C programmers. Unlike the bitset in C++, the Java BitSet does not have a "size" state (it has an effectively infinite size, initialized with 0 bits); a bit can be set or tested at any index.
Set operators for intersection (and), union (or) and difference (minus) are feasible using a flyweight pattern as shown below. An interface represents physical nodes and "virtual" result nodes of an operator. Instances of this interface are created on demand during a trie traversal.