enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    For example, a neural network may be more effective than a linear regression model for some types of data. [14] Increase the amount of training data: If the model is underfitting due to a lack of data, increasing the amount of training data may help. This will allow the model to better capture the underlying patterns in the data. [14]

  4. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  5. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    In supervised learning, the training data is labeled with the expected answers, while in unsupervised learning, the model identifies patterns or structures in unlabeled data. In machine learning , supervised learning ( SL ) is a paradigm where a model is trained using input objects (e.g. a vector of predictor variables) and desired output ...

  6. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  7. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    SD-3 was the training set, and it contained digits written by 2000 employees of the United States Census Bureau. It was much cleaner and easier to recognize than images in SD-1. [ 7 ] It was found that machine learning systems trained and validated on SD-3 suffered significant drops in performance on the test set.

  9. Synthetic data - Wikipedia

    en.wikipedia.org/wiki/Synthetic_data

    Synthetic data is generated to meet specific needs or certain conditions that may not be found in the original, real data. One of the hurdles in applying up-to-date machine learning approaches for complex scientific tasks is the scarcity of labeled data, a gap effectively bridged by the use of synthetic data, which closely replicates real experimental data. [3]