enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  3. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    A different proof that these triangles have area is based on the use of Minkowski's theorem on lattice points in symmetric convex sets. [10] Subdivision of a grid polygon into special triangles. This already proves Pick's formula for a polygon that is one of these special triangles.

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area ⁠ K {\displaystyle K} ⁠ of a cyclic quadrilateral whose sides have lengths ⁠ a , {\displaystyle a,} ⁠ ⁠ b , {\displaystyle b,} ⁠ ⁠ c , {\displaystyle c ...

  5. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    The second moment of area about the origin for any simple polygon on the XY-plane can be computed in general by summing contributions from each segment of the polygon after dividing the area into a set of triangles. This formula is related to the shoelace formula and can be considered a special case of Green's theorem. A polygon is assumed to ...

  6. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it to conics. A short elementary computational proof in the case of the real projective plane was found by Stefanovic (2010).

  7. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...

  8. Honeycomb conjecture - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_conjecture

    It is also related to the densest circle packing of the plane, in which every circle is tangent to six other circles, which fill just over 90% of the area of the plane. The case when the problem is restricted to a square grid was solved in 1989 by Jaigyoung Choe who proved that the optimal figure is an irregular hexagon. [4] [5]

  9. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...