Search results
Results from the WOW.Com Content Network
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene . Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures.
Biological processes are those processes that are necessary for an organism to live and that shape its capacities for interacting with its environment. Biological processes are made of many chemical reactions or other events that are involved in the persistence and transformation of life forms.
Cyclohexylmethanol can be produced in two step starting with the hydroformylation of cyclohexene. This process also give cyclohexane, resulting from hydrogenation. The resulting cyclohexanecarboxaldehyde is then hydrogenated to give the alcohol. [5] [6]
Elution then is the process of removing analytes from the adsorbent by running a solvent, called an eluent, past the adsorbent–analyte complex. As the solvent molecules "elute", or travel down through the chromatography column, they can either pass by the adsorbent–analyte complex or displace the analyte by binding to the adsorbent in its ...
In the Bashkirov process, the autoxidation is conducted in the presence of boric acid, yielding an intermediate borate ester. The process is more selective with the boric acid, but the conversion to the alcohol requires hydrolysis of the ester. This approach continues to be used in the production of cyclododecanol from cyclododecane.
Decarboxylations are pervasive in biology. They are often classified according to the cofactors that catalyze the transformations. [11] Biotin-coupled processes effect the decarboxylation of malonyl-CoA to acetyl-CoA. Thiamine (T:) is the active component for decarboxylation of alpha-ketoacids, including pyruvate: T: + RC(O)CO 2 H → T=C(OH)R ...