enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on an object under acceleration can be much greater than 1 g, for example, the dragster pictured at top right can exert a horizontal g-force of 5.3 when accelerating. The g-force acting on an object under acceleration may be downwards, for example when cresting a sharp hill on a roller coaster.

  3. Dyne - Wikipedia

    en.wikipedia.org/wiki/Dyne

    An equivalent definition of the dyne is "that force which, acting for one second, will produce a change of velocity of one centimetre per second in a mass of one gram". [3] One dyne is equal to 10 micronewtons, 105 N or to 10 nsn (nanosthenes) in the old metre–tonne–second system of units. 1 dyn = 1 g⋅cm/s 2 = 105 kg⋅m/s 2 = 10 ...

  4. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    10 −1 g dg decigram 10 1 g dag decagram 10 −2 g cg: centigram: 10 2 g hg hectogram 10 −3 g mg: milligram: 10 3 g kg: kilogram: 10 −6 g μg: microgram (mcg) 10 6 g Mg megagram 10 −9 g ng: nanogram: 10 9 g Gg gigagram 10 −12 g pg picogram 10 12 g Tg teragram 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g Eg ...

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  7. Orders of magnitude (force) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(force)

    Force measured in a 2010 experiment by perturbing 60 beryllium-9 ions [4] [5] 10 −18 attonewton (aN) 10 −17: 30 aN Smallest force of gravity measured [6] [7] 10 −15 femtonewton (fN) 10 −14 ~10 fN Brownian motion force on an E. coli bacterium averaged over 1 second [8] ~10 fN Weight of an E. coli bacterium [9] [10] 10 −13 ~100 fN Force ...

  8. Gravitational metric system - Wikipedia

    en.wikipedia.org/wiki/Gravitational_metric_system

    In Germany, the kilopond lost its legal status as a unit of force on 1 January 1978, when for legal purposes the SI unit system was adopted. [3] A kilopond can be converted to the SI unit newton by multiplication with the standard acceleration g n: 1 kp = g n ⋅ 1 kg = 9.806 65 kg⋅m⋅s −2 = 9.806 65 N

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In Einstein's theory of general relativity, gravitation is an attribute of curved spacetime instead of being due to a force propagated between bodies. In Einstein's theory, masses distort spacetime in their vicinity, and other particles move in trajectories determined by the geometry of spacetime. The gravitational force is a fictitious force.