enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    At high shear rates, polymers are entirely disentangled and the viscosity value of the system plateaus at η ∞, or the infinite shear viscosity plateau. At low shear rates, the shear is too low to be impeded by entanglements and the viscosity value of the system is η 0, or the zero shear rate viscosity. The value of η ∞ represents the ...

  3. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    h is the distance between the two parallel plates, measured in meters. Or: For the simple shear case, it is just a gradient of velocity in a flowing material. The SI unit of measurement for shear rate is s −1, expressed as "reciprocal seconds" or "inverse seconds". [1] However, when modelling fluids in 3D, it is common to consider a scalar ...

  4. Apparent viscosity - Wikipedia

    en.wikipedia.org/wiki/Apparent_viscosity

    A single viscosity measurement at a constant speed in a typical viscometer is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments ...

  5. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    Herschel–Bulkley fluid. The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress .

  6. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    Power-law fluid. In continuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by. where: K is the flow consistency index (SI units Pa·s n), ∂ u / ∂ y⁠ is the shear rate or the velocity gradient ...

  7. Bingham-Papanastasiou model - Wikipedia

    en.wikipedia.org/wiki/Bingham-papanastasiou_model

    This approximation could be made more and more accurate at even vanishingly small shear rates by means of a material parameter that controls the exponential growth of stress. Thus, a new impetus was given in 1987 with the publication by Papanastasiou [4] of such a modification of the Bingham model with an exponential stress-growth term. The new ...

  8. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    Viscosity models for mixtures. The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move ...

  9. Upper-convected Maxwell model - Wikipedia

    en.wikipedia.org/wiki/Upper-convected_Maxwell_model

    For this case only two components of the shear stress became non-zero: = ˙ and = ˙ where ˙ is the shear rate.. Thus, the upper-convected Maxwell model predicts for the simple shear that shear stress to be proportional to the shear rate and the first difference of normal stresses is proportional to the square of the shear rate, the second difference of normal stresses is always zero.