Search results
Results from the WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
This is a featured picture, which means that members of the community have identified it as one of the finest images on the English Wikipedia, adding significantly to its accompanying article. If you have a different image of similar quality, be sure to upload it using the proper free license tag, add it to a relevant article, and nominate it.
The reverse Krebs cycle, also known as the reverse TCA cycle (rTCA) or reductive citric acid cycle, is an alternative to the standard Calvin-Benson cycle for carbon fixation. It has been found in strict anaerobic or microaerobic bacteria (as Aquificales ) and anaerobic archea .
This equation is a summary of what happens in three series of biochemical reactions: glycolysis, the Krebs cycle (also known as the Citric acid cycle), and oxidative phosphorylation. C 6 H 12 O 6 + 6 O 2 + 38 ADP + 38 phosphate → 6 CO 2 + 44 H 2 O + 38 ATP. In Oxidative phosphorylation, ATP is synthesized from ADP and a phosphate using ATP ...
To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [9] [10] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes.
Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. [1] [2] It includes three major steps: Lipolysis of and release from adipose tissue
The reaction from ethanol to carbon dioxide and water proceeds in at least 11 steps in humans. C 2 H 6 O (ethanol) is converted to C 2 H 4 O (acetaldehyde), then to C 2 H 4 O 2 (acetic acid), then to acetyl-CoA. Once acetyl-CoA is formed, it is free to enter directly into the citric acid cycle (TCA) and is converted to 2 CO 2 molecules in 8 ...
Common name IUPAC name Molecular formula Structural formula citric acid: 2-hydroxypropane-1,2,3-tricarboxylic acid: C 6 H 8 O 7: isocitric acid: 1-hydroxypropane-1,2,3-tricarboxylic acid