Search results
Results from the WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
The reverse Krebs cycle, also known as the reverse TCA cycle (rTCA) or reductive citric acid cycle, is an alternative to the standard Calvin-Benson cycle for carbon fixation. It has been found in strict anaerobic or microaerobic bacteria (as Aquificales ) and anaerobic archea .
Download as PDF; Printable version; ... is used in the citric acid cycle – also known as tricarboxylic acid (TCA) cycle or Krebs cycle ...
The Reductive/Reverse TCA Cycle (rTCA cycle). Shown are all of the reactants, intermediates and products for this cycle. The reverse Krebs cycle (also known as the reverse tricarboxylic acid cycle, the reverse TCA cycle, or the reverse citric acid cycle, or the reductive tricarboxylic acid cycle, or the reductive TCA cycle) is a sequence of chemical reactions that are used by some bacteria and ...
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
The reaction from ethanol to carbon dioxide and water proceeds in at least 11 steps in humans. C 2 H 6 O (ethanol) is converted to C 2 H 4 O (acetaldehyde), then to C 2 H 4 O 2 (acetic acid), then to acetyl-CoA. Once acetyl-CoA is formed, it is free to enter directly into the citric acid cycle (TCA) and is converted to 2 CO 2 molecules in 8 ...
Diagram Enzyme End product Dehydrogenation by FAD: The first step is the oxidation of the fatty acid by Acyl-CoA-Dehydrogenase. The enzyme catalyzes the formation of a trans-double bond between the C-2 and C-3 by selectively remove hydrogen atoms from the β-carbon. The regioselectivity of this step is essential for the subsequent hydration and ...
[5]: 572 To the right is an illustration of the amphibolic properties of the TCA cycle. The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs ...