Search results
Results from the WOW.Com Content Network
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
In first-order set theories, the common framework, the set induction principle is an axiom schema, granting an axiom for any predicate (i.e. class). In contrast, the axiom of regularity is a single axiom, formulated with a universal quantifier only over elements of the domain of discourse, i.e. over sets.
Bar induction is a reasoning principle used in intuitionistic mathematics, introduced by L. E. J. Brouwer. Bar induction's main use is the intuitionistic derivation of the fan theorem, a key result used in the derivation of the uniform continuity theorem. It is also useful in giving constructive alternatives to other classical results.
A simple common example is the Universe à la Tarski type former. It creates some inductive type : and some inductive predicate :.For every type in the type theory (except itself!), there will be some element of which may be seen as some code for this corresponding type; The predicate inductively encodes each possible type to the corresponding element of ; and constructing new codes in will ...
Structural recursion is a recursion method bearing the same relationship to structural induction as ordinary recursion bears to ordinary mathematical induction. Structural induction is used to prove that some proposition P ( x ) holds for all x of some sort of recursively defined structure, such as formulas , lists , or trees .
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
In Peano arithmetic, second-order arithmetic and related systems, and indeed in most (not necessarily formal) mathematical treatments of the well-ordering principle, the principle is derived from the principle of mathematical induction, which is itself taken as basic.
It is helpful to associate changing electric currents with a build-up or decrease of magnetic field energy. The corresponding energy transfer requires or generates a voltage. A mechanical analogy in the K = 1 case with magnetic field energy (1/2)Li 2 is a body with mass M, velocity u and kinetic energy (1/2)Mu 2. The rate of change of velocity ...