enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homeomorphism - Wikipedia

    en.wikipedia.org/wiki/Homeomorphism

    In mathematics and more specifically in topology, a homeomorphism (from Greek roots meaning "similar shape", named by Henri Poincaré), [2] [3] also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function.

  3. Homomorphism - Wikipedia

    en.wikipedia.org/wiki/Homomorphism

    In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape".

  4. Homeomorphism (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Homeomorphism_(graph_theory)

    In graph theory, two graphs and ′ are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of ′.If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the ...

  5. Graph homomorphism - Wikipedia

    en.wikipedia.org/wiki/Graph_homomorphism

    The above definition is extended to directed graphs. Then, for a homomorphism f : G → H, (f(u),f(v)) is an arc (directed edge) of H whenever (u,v) is an arc of G. There is an injective homomorphism from G to H (i.e., one that maps distinct vertices in G to distinct vertices in H) if and only if G is isomorphic to a subgraph of H.

  6. Fundamental theorem on homomorphisms - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_on...

    In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism. The homomorphism theorem is used to prove the isomorphism theorems.

  7. Isomorphism - Wikipedia

    en.wikipedia.org/wiki/Isomorphism

    A homeomorphism is an isomorphism of topological spaces. A diffeomorphism is an isomorphism of spaces equipped with a differential structure, typically differentiable manifolds. A symplectomorphism is an isomorphism of symplectic manifolds. A permutation is an automorphism of a set.

  8. Homomorphism density - Wikipedia

    en.wikipedia.org/wiki/Homomorphism_density

    This definition of homomorphism density is indeed a generalization, because for every graph and its associated step graphon , (,) = (,). [1] The definition can be further extended to all symmetric, measurable functions . The following example demonstrates the benefit of this further generalization.

  9. Uniform isomorphism - Wikipedia

    en.wikipedia.org/wiki/Uniform_isomorphism

    In the mathematical field of topology a uniform isomorphism or uniform homeomorphism is a special isomorphism between uniform spaces that respects uniform properties. Uniform spaces with uniform maps form a category. An isomorphism between uniform spaces is called a uniform isomorphism.