Search results
Results from the WOW.Com Content Network
In mathematics and more specifically in topology, a homeomorphism (from Greek roots meaning "similar shape", named by Henri Poincaré), [2] [3] also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function.
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape".
In graph theory, two graphs and ′ are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of ′.If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the ...
The above definition is extended to directed graphs. Then, for a homomorphism f : G → H, (f(u),f(v)) is an arc (directed edge) of H whenever (u,v) is an arc of G. There is an injective homomorphism from G to H (i.e., one that maps distinct vertices in G to distinct vertices in H) if and only if G is isomorphic to a subgraph of H.
In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism. The homomorphism theorem is used to prove the isomorphism theorems.
A homeomorphism is an isomorphism of topological spaces. A diffeomorphism is an isomorphism of spaces equipped with a differential structure, typically differentiable manifolds. A symplectomorphism is an isomorphism of symplectic manifolds. A permutation is an automorphism of a set.
This definition of homomorphism density is indeed a generalization, because for every graph and its associated step graphon , (,) = (,). [1] The definition can be further extended to all symmetric, measurable functions . The following example demonstrates the benefit of this further generalization.
In the mathematical field of topology a uniform isomorphism or uniform homeomorphism is a special isomorphism between uniform spaces that respects uniform properties. Uniform spaces with uniform maps form a category. An isomorphism between uniform spaces is called a uniform isomorphism.