Search results
Results from the WOW.Com Content Network
Branch point in a polymer. Polymer architecture in polymer science relates to the way branching leads to a deviation from a strictly linear polymer chain. [1] Branching may occur randomly or reactions may be designed so that specific architectures are targeted. [1] It is an important microstructural feature.
Topological polymers, or polymer topology, could refer to a single polymeric chain with topological information or a polymer network with special junctions or connections. When the topology of a polymeric chain or network is investigated, the exact chemical composition is usually neglected, but the way of junctions and connections is more ...
An important microstructural feature of a polymer is its architecture and shape, which relates to the way branch points lead to a deviation from a simple linear chain. [25] A branched polymer molecule is composed of a main chain with one or more substituent side chains or branches.
In polymer science, the polymer chain or simply backbone of a polymer is the main chain of a polymer. Polymers are often classified according to the elements in the main chains. The character of the backbone, i.e. its flexibility, determines the properties of the polymer (such as the glass transition temperature).
In polymer chemistry, branching is the regular or irregular attachment of side chains to a polymer's backbone chain. It occurs by the replacement of a substituent (e.g. a hydrogen atom ) on a monomer subunit by another covalently-bonded chain of that polymer; or, in the case of a graft copolymer , by a chain of another type.
An ideal chain (or freely-jointed chain) is the simplest model in polymer chemistry to describe polymers, such as nucleic acids and proteins.It assumes that the monomers in a polymer are located at the steps of a hypothetical random walker that does not remember its previous steps.
In polymer chemistry, chain walking (CW) or chain running or chain migration is a mechanism that operates during some alkene polymerization reactions. CW can be also considered as a specific case of intermolecular chain transfer (analogous to radical ethene polymerization).
The steady-state concentration of the growing polymer chains is 10 −7 M by order of magnitude, and the average life time of an individual polymer radical before termination is about 5–10 s. A drawback of the conventional radical polymerization is the limited control of chain architecture, molecular weight distribution, and composition.