enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear pasta - Wikipedia

    en.wikipedia.org/wiki/Nuclear_pasta

    For a typical neutron star of 1.4 solar masses (M ☉) and 12 km radius, the nuclear pasta layer in the crust can be about 100 m thick and have a mass of about 0.01 M ☉. In terms of mass, this is a significant portion of the crust of a neutron star. [9] [10]

  3. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    In neutron stars, the neutron drip is the transition point where nuclei become so neutron-rich that they can no longer hold additional neutrons, leading to a sea of free neutrons being formed. The sea of neutrons formed after neutron drip provides additional pressure support, which helps maintain the star's structural integrity and prevents ...

  4. Molecules in stars - Wikipedia

    en.wikipedia.org/wiki/Molecules_in_stars

    Stellar molecules are molecules that exist or form in stars. Such formations can take place when the temperature is low enough for molecules to form – typically around 6,000 K (5,730 °C; 10,340 °F) or cooler. [1] Otherwise the stellar matter is restricted to atoms and ions in the forms of gas or – at very high temperatures – plasma.

  5. List of neutron stars - Wikipedia

    en.wikipedia.org/wiki/List_of_Neutron_stars

    Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects. [3] In the cores of these stars, protons and electrons combine to form neutrons. [2] Neutron stars can be classified as pulsars if they are ...

  6. Glossary of astronomy - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_astronomy

    neutron star A type of compact star that is composed almost entirely of neutrons, which are a type of subatomic particle with no electrical charge. Typically, neutron stars have a mass between about 1.35 and 2.0 times the mass of the Sun, but with a radius of only 12 km (7.5 mi), making them among the densest known objects in the universe.

  7. Strange matter - Wikipedia

    en.wikipedia.org/wiki/Strange_matter

    The higher rest mass of the strange quark costs some energy, but by opening up an additional set of energy levels, the average energy per particle can be lower, [1]: 5 making strange matter more stable than non-strange quark matter. A neutron star with a quark matter core is often [1] [2] called a hybrid star. However, it is difficult to know ...

  8. Hypothetical types of biochemistry - Wikipedia

    en.wikipedia.org/wiki/Hypothetical_types_of...

    [51] [53] Ammonia can dissolve most organic molecules at least as well as water does and, in addition, it is capable of dissolving many elemental metals. Haldane made the point that various common water-related organic compounds have ammonia-related analogs; for instance the ammonia-related amine group (−NH 2 ) is analogous to the water ...

  9. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...