Search results
Results from the WOW.Com Content Network
A macroscopic electronic device, when scaled down to a meso-size, starts revealing quantum mechanical properties. For example, at the macroscopic level the conductance of a wire increases continuously with its diameter. However, at the mesoscopic level, the wire's conductance is quantized: the increases occur in discrete, or individual, whole ...
For example, the battery performance of mesoporous electroactive materials is significantly different from that of their bulk structure. [ 5 ] A procedure for producing mesoporous materials (silica) was patented around 1970, [ 6 ] [ 7 ] [ 8 ] and methods based on the Stöber process from 1968 [ 9 ] were still in use in 2015. [ 10 ]
A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale . In describing nanostructures, it is necessary to differentiate between the number of dimensions in the volume of an object which are on the nanoscale .
Mesoporous silica is a form of silica that is characterised by its mesoporous structure, that is, having pores that range from 2 nm to 50 nm in diameter. According to IUPAC's terminology, mesoporosity sits between microporous (<2 nm) and macroporous (>50 nm). Mesoporous silica is a relatively recent development in nanotechnology.
After additional monomers are added and polymerization occurs, the solvent is removed and the remaining structure is considered a nanoporous material. [8] Organic nanoporous materials can be further classified into crystalline and amorphous networks. [8] Crystalline networks are materials that have a well-defined pore sizes.
[citation needed] The two materials have very different properties because the irregular structure of the atactic version makes it impossible for the polymer chains to stack in a regular fashion: whereas syndiotactic PS is a semicrystalline material, the more common atactic version cannot crystallize and forms a glass instead.
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties. [2] [3] [4]
A meso compound or meso isomer is an optically inactive isomer in a set of stereoisomers, at least two of which are optically active. [1] [2] This means that despite containing two or more stereocenters, the molecule is not chiral. A meso compound is superposable on its mirror image (not to be confused with superimposable, as any two objects ...