enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  3. Seiberg–Witten invariants - Wikipedia

    en.wikipedia.org/wiki/Seiberg–Witten_invariants

    A manifold M is said to be of simple type if the Seiberg–Witten invariant vanishes whenever the expected dimension of the moduli space is nonzero. The simple type conjecture states that if M is simply connected and b 2 + (M) ≥ 2 then the manifold is of simple type. This is true for symplectic manifolds.

  4. 4-manifold - Wikipedia

    en.wikipedia.org/wiki/4-manifold

    Classify the different smooth structures on a smoothable manifold. There is an almost complete answer to the first problem asking which simply connected compact 4-manifolds have smooth structures. First, the Kirby–Siebenmann class must vanish. If the intersection form is definite Donaldson's theorem (Donaldson 1983) gives a complete answer ...

  5. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    Stochastic differential geometry provides insight into classical analytic problems, and offers new approaches to prove results by means of probability. For example, one can apply Brownian motion to the Dirichlet problem at infinity for Cartan-Hadamard manifolds [4] or give a probabilistic proof of the Atiyah-Singer index theorem. [5]

  6. Hodge theory - Wikipedia

    en.wikipedia.org/wiki/Hodge_theory

    In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations.The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric.

  7. Here’s What Each Sign Can Expect This January, Per An ... - AOL

    www.aol.com/sign-expect-january-per-astrologer...

    You're starting the month on fire, Leo, with Mars, the planet of action, in your sign until the 6th. Use this feisty energy to set intentions for personal growth. Use this feisty energy to set ...

  8. Democratic Representatives, activist call on Biden to commute ...

    www.aol.com/democratic-representatives-activist...

    Dem. Reps. Ayana Pressley and Cori Bush called for Biden to commute the death sentences of those on federal death row in a press conference Tuesday.

  9. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...