Search results
Results from the WOW.Com Content Network
A basic example is in the argv argument to the main function in C (and C++), which is given in the prototype as char **argv—this is because the variable argv itself is a pointer to an array of strings (an array of arrays), so *argv is a pointer to the 0th string (by convention the name of the program), and **argv is the 0th character of the ...
HackerRank's programming challenges can be solved in a variety of programming languages (including Java, C++, PHP, Python, SQL, and JavaScript) and span multiple computer science domains. [ 2 ] HackerRank categorizes most of their programming challenges into a number of core computer science domains, [ 3 ] including database management ...
For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing system. Thus two indices are used for a two-dimensional array, three for a three-dimensional array, and n for an n-dimensional array.
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0? Can the edit distance between two strings of length n be computed in strongly sub-quadratic time? (This is only possible if the strong exponential time hypothesis is false.) Can X + Y sorting be done in o(n 2 log n) time?
The smallest-circle problem in the plane is an example of a facility location problem (the 1-center problem) in which the location of a new facility must be chosen to provide service to a number of customers, minimizing the farthest distance that any customer must travel to reach the new facility. [3]
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,