Search results
Results from the WOW.Com Content Network
Both types of pentoses in DNA and RNA are in their β-furanose (closed five-membered ring) form and they define the identity of a nucleic acid. DNA is defined by containing 2'-deoxy-ribose nucleic acid while RNA is defined by containing ribose nucleic acid. [1] In some occasions, DNA and RNA may contain some minor bases.
First, an RNA polymerase along with general transcription factors binds to the promoter region of the gene to form a closed complex called the preinitiation complex. The subsequent transition of the complex from the closed state to the open state results in the melting or separation of the two DNA strands and the positioning of the template ...
Reverse transcription is the transfer of information from RNA to DNA (the reverse of normal transcription). This is known to occur in the case of retroviruses, such as HIV, as well as in eukaryotes, in the case of retrotransposons and telomere synthesis. It is the process by which genetic information from RNA gets transcribed into new DNA.
Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs). Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript.
Usually, this RNA copy is then used to make a matching protein sequence in a process called translation, which depends on the same interaction between RNA nucleotides. In an alternative fashion, a cell may copy its genetic information in a process called DNA replication. The details of these functions are covered in other articles; here the ...
The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
The presence of this functional group causes the helix to mostly take the A-form geometry, [11] although in single strand dinucleotide contexts, RNA can rarely also adopt the B-form most commonly observed in DNA. [12] The A-form geometry results in a very deep and narrow major groove and a shallow and wide minor groove. [13]
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U