Search results
Results from the WOW.Com Content Network
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.
Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...
In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...
The Hazen–Williams equation is an empirical relationship which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.
Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold
The ratio of length to radius of a pipe should be greater than 1/48 of the Reynolds number for the Hagen–Poiseuille law to be valid. [9] If the pipe is too short, the Hagen–Poiseuille equation may result in unphysically high flow rates; the flow is bounded by Bernoulli's principle, under less restrictive conditions, by
For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross-section.