Search results
Results from the WOW.Com Content Network
The sound barrier or sonic barrier is the large increase in aerodynamic drag and other undesirable effects experienced by an aircraft or other object when it approaches the speed of sound. When aircraft first approached the speed of sound, these effects were seen as constituting a barrier, making faster speeds very difficult or impossible.
Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level , this speed is approximately 343.2 m/s (1,126 ft/s; 768 mph; 667.1 kn; 1,236 km/h).
The X-1 aircraft #46-062, nicknamed Glamorous Glennis and flown by Chuck Yeager, was the first piloted airplane to exceed the speed of sound in level flight and was the first of the X-planes, a series of American experimental rocket planes (and non-rocket planes) designed for testing new technologies.
At a speed of about 767 miles per hour, depending on temperature and humidity, a moving object will break the sound barrier. It was not until World War II, when aircraft started to reach the ...
Yeager broke the sound barrier on October 14, 1947, in level flight while piloting the X-1 Glamorous Glennis at Mach 1.05 at an altitude of 45,000 ft (13,700 m) [38] [d] over the Rogers Dry Lake of the Mojave Desert in California. [42] The success of the mission was not announced to the public for nearly eight months, until June 10, 1948.
Therefore, for a boom to reach the ground, the aircraft's speed relative to the ground must be greater than the speed of sound at the ground. For example, the speed of sound at 30,000 feet (9,100 m) is about 670 miles per hour (1,080 km/h), but an aircraft must travel at least 750 miles per hour (1,210 km/h) (Mach 1.12) for a boom to be heard ...
No the plane did not break the sound barrier. It was getting a good push from near 200 mph jet stream. ... the second "strongest upper-level wind recorded in local history going back to the mid ...
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.