Search results
Results from the WOW.Com Content Network
Armature reaction is essential in amplidyne rotating amplifiers. Armature reaction drop is the effect of a magnetic field on the distribution of the flux under main poles of a generator. [5] Since an armature is wound with coils of wire, a magnetic field is set up in the armature whenever a current flows in the coils.
Armature control is the most common control technique for DC motors. In order to implement this control, the stator flux must be kept constant. To achieve this, either the stator voltage is kept constant or the stator coils are replaced by a permanent magnet. In the latter case, the motor is said to be a permanent magnet DC motor and is driven ...
The stator is the stationary part of a rotary system, [1] found in electric generators, electric motors, sirens, mud motors, or biological rotors (such as bacterial flagella or ATP synthase). Energy flows through a stator to or from the rotating component of the system, the rotor .
In mechanical terms, the rotor is the rotating part, and the stator is the stationary part of an electrical machine. In electrical terms, the armature is the power-producing component and the field is the magnetic field component of an electrical machine. The armature can be on either the rotor or the stator.
A permanent magnet (PM) motor does not have a field winding on the stator frame, instead relying on PMs to provide the magnetic field against which the rotor field interacts to produce torque. Compensation windings in series with the armature may be used on large motors to improve commutation under load. Because this field is fixed, it cannot ...
Armature: The power-producing component of an electrical machine. In a generator, alternator, or dynamo, the armature windings generate the electric current, which provides power to an external circuit. The armature can be on either the rotor or the stator, depending on the design, with the field coil or magnet on the other part.
The rotating magnetic field is the key principle in the operation of induction machines.The induction motor consists of a stator and rotor.In the stator a group of fixed windings are so arranged that a two phase current, for example, produces a magnetic field which rotates at an angular velocity determined by the frequency of the alternating current.
The minimum armature current corresponds to the point of unity power factor (voltage and current in phase). As in a synchronous motor, the stator of the machine is connected to a three-phase supply of voltage V s {\displaystyle V_{s}} (assumed to be constant), and this creates a rotating magnetic field within the machine.