enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]

  3. Inverse probability - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability

    The method of inverse probability (assigning a probability distribution to an unobserved variable) is called Bayesian probability, the distribution of data given the unobserved variable is the likelihood function (which does not by itself give a probability distribution for the parameter), and the distribution of an unobserved variable, given ...

  4. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  5. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Adjusting for unequal probability selection through "individual case weights" (e.g. inverse probability weighting), yields various types of estimators for quantities of interest. Estimators such as Horvitz–Thompson estimator yield unbiased estimators (if the selection probabilities are indeed known, or approximately known), for total and the ...

  6. Inverse distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse_distribution

    In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .

  7. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    In statistics, the inverse Wishart distribution, also called the inverted Wishart distribution, is a probability distribution defined on real-valued positive-definite matrices. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

  8. Inverse-chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-chi-squared...

    In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution [1]) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution .

  9. Inverse distance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_distance_weighting

    Inverse Distance Weighting as a sum of all weighting functions for each sample point. Each function has the value of one of the samples at its sample point and zero at every other sample point. Inverse distance weighting ( IDW ) is a type of deterministic method for multivariate interpolation with a known scattered set of points.