Search results
Results from the WOW.Com Content Network
The dominant physical process in x-ray absorption is one where the absorbed photon ejects a core photoelectron from the absorbing atom, leaving behind a core hole. [1] The ejected photoelectron's energy will be equal to that of the absorbed photon minus the binding energy of the initial core state.
X-ray photons incident upon a layer of a-Se generate electron-hole pairs via the internal photoelectric effect. A bias voltage applied to the depth of the selenium layer draw the electrons and holes to corresponding electrodes; the generated current is thus proportional to the intensity of the irradiation.
With the advancement of image processing software the number applications for automated x-ray inspection is huge and constantly growing. The first applications started off in industries where the safety aspect of components demanded a careful inspection of each part produced (e.g. welding seams for metal parts in nuclear power stations) because the technology was expectedly very expensive in ...
An X-ray generator generally contains an X-ray tube to produce the X-rays. Possibly, radioisotopes can also be used to generate X-rays. [1]An X-ray tube is a simple vacuum tube that contains a cathode, which directs a stream of electrons into a vacuum, and an anode, which collects the electrons and is made of tungsten to evacuate the heat generated by the collision.
The XANES energy region [3] extends between the edge region and the EXAFS region over a 50-100 eV energy range around the core level x-ray absorption threshold. Before 1980 the XANES region was wrongly assigned to different final states: a) unoccupied total density of states, or b) unoccupied molecular orbitals (kossel structure) or c) unoccupied atomic orbitals or d) low energy EXAFS ...
X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected ...
This choice also places K-alpha firmly in the X-ray energy range. Similarly to Lyman-alpha, the K-alpha emission is composed of two spectral lines, K-alpha 1 (Kα 1) and K-alpha 2 (Kα 2). [6] The K-alpha 1 emission is slightly higher in energy (and, thus, has a lower wavelength) than the K-alpha 2 emission.
The X-ray absorption near-edge structure , introduced in 1980 and later in 1983 and also called NEXAFS (near-edge X-ray absorption fine structure), which are dominated by core transitions to quasi bound states (multiple scattering resonances) for photoelectrons with kinetic energy in the range from 10 to 150 eV above the chemical potential ...