enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  4. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    The force of gravity is weakest at the equator because of the centrifugal force caused by the Earth's rotation and because points on the equator are farthest from the center of the Earth. The force of gravity varies with latitude, and the resultant acceleration increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles ...

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The result reported by Charles Hutton (1778) suggested a density of 4.5 g/cm 3 (⁠4 + 1 / 2 ⁠ times the density of water), about 20% below the modern value. [16] This immediately led to estimates on the densities and masses of the Sun, Moon and planets, sent by Hutton to Jérôme Lalande for inclusion in his planetary tables.

  7. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2. The value of the g n is defined as approximately equal to the acceleration due to gravity at the Earth's surface, although the actual acceleration varies slightly ...

  8. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity.When moving eastbound, the object's angular velocity is increased (in addition to Earth's rotation), and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.

  9. Acceleration due to gravity - Wikipedia

    en.wikipedia.org/wiki/Acceleration_due_to_gravity

    Acceleration due to gravity, acceleration of gravity or gravitational acceleration may refer to: Gravitational acceleration, the acceleration caused by the gravitational attraction of massive bodies in general; Gravity of Earth, the acceleration caused by the combination of gravitational attraction and centrifugal force of the Earth