Search results
Results from the WOW.Com Content Network
Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.
Old drawing of a chloralkali process plant (Edgewood, Maryland) The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [1] which are
Original – A membrane cell process for chloralkali production Reason Complicated diagram to support a discussion with a lot of chemical equations and mass transfer and charge balance. Huge industry (important article). Support work on chlorine Articles in which this image appears Chloralkali process, Chlorine, Chlorine production
The process of electrochlorination is a simple application based on the chloralkali process (in an unpartitioned cell). It is the electrolysis of saltwater to produce a chlorinated solution. The first step is removing any solids from the saltwater. Next, the saltwater streams through an electrolyzer cell's channel of decreasing thickness.
Salt water chlorination is a process that uses dissolved salt (1000–4000 ppm or 1–4 g/L) for the chlorination of swimming pools and hot tubs.The chlorine generator (also known as salt cell, salt generator, salt chlorinator, or SWG) uses electrolysis in the presence of dissolved salt to produce chlorine gas or its dissolved forms, hypochlorous acid and sodium hypochlorite, which are already ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature.
Under steady state conditions the chloride process is a continuous cycle in which chlorine changes from the oxidized state to the reduced state and reverse. The oxidized form of the chlorine is molecular chlorine Cl 2, the reduced form is titanium tetrachloride (TiCl 4). The oxidizing agent is molecular oxygen (O 2), the reducing agent is coke ...