Search results
Results from the WOW.Com Content Network
This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with (k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from independent normal distributions. Bartlett's test is sensitive to departures from normality.
The null hypothesis of this chi-squared test is homoscedasticity, and the alternative hypothesis would indicate heteroscedasticity. Since the Breusch–Pagan test is sensitive to departures from normality or small sample sizes, the Koenker–Bassett or 'generalized Breusch–Pagan' test is commonly used instead.
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
Conversely, a “large" R 2 (scaled by the sample size so that it follows the chi-squared distribution) counts against the hypothesis of homoskedasticity. An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a ...
Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter
In Stata, one specifies the full regression, and then enters the command estat hettest followed by all independent variables. [9] [10] In SAS, Breusch–Pagan can be obtained using the Proc Model option. In Python, there is a method het_breuschpagan in statsmodels.stats.diagnostic (the statsmodels package) for Breusch–Pagan test. [11]
Herbert Glejser, in his 1969 paper outlining the Glejser test, provides a small sampling experiment to test the power and sensitivity of the Goldfeld–Quandt test. His results show limited success for the Goldfeld–Quandt test except under cases of "pure heteroskedasticity"—where variance can be described as a function of only the underlying explanatory variable.
where T is the sample size, is the residual and is the row of the design matrix, and is the Bartlett kernel [8] and can be thought of as a weight that decreases with increasing separation between samples. Disturbances that are farther apart from each other are given lower weight, while those with equal subscripts are given a weight of 1.