Search results
Results from the WOW.Com Content Network
In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". [3] [4] The term was introduced by Carl Nägeli in 1858. [5] [6] Different types of phloem can be distinguished. The early phloem formed in the growth apices is called protophloem.
Bast fibres are soft and flexible, as opposed to leaf fibres from monocotyledonous plants, which are hard and stiff. [2] Since the valuable fibres are located in the phloem, they must often be separated from the woody core, the xylem, and sometimes also from the epidermis.
Damage or destruction of the phloem impedes the transport of photosynthetic products throughout the plant; in extreme cases, when a band of phloem all the way around the stem is removed, the plant will usually quickly die. Bark damage in horticultural applications, as in gardening and public landscaping, results in often unwanted aesthetic damage.
English: xylem (blue) carries water from the roots upwards phloem (orange) carries products of photosynthesis from the place of their origin (source) to organs where they are needed (roots, storage organs, flowers, fruits – sink); note that e.g. the storage organs may be source and leaves may be sink at the beginning of the growing season
The cells in vascular tissue are typically long and slender. Since the xylem and phloem function in the conduction of water, minerals, and nutrients throughout the plant, it is not surprising that their form should be similar to pipes. The individual cells of phloem are connected end-to-end, just as the sections of a pipe might be.
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
The fascicular and interfascicular cambia thus join up to form a ring (in three dimensions, a tube) which separates the primary xylem and primary phloem, the cambium ring. The vascular cambium produces secondary xylem on the inside of the ring, and secondary phloem on the outside, pushing the primary xylem and phloem apart.
It serves several critical functions, including structural support, as the primary vein helps the leaf maintain its shape and structure; food and water transportation, as it contains xylem and phloem tissues that transport water, minerals, and nutrients to and from the leaf; [2] and connection to the stem, as it links the leaf to its vascular ...