Search results
Results from the WOW.Com Content Network
One common form of polar interaction is the hydrogen bond, which is also known as the H-bond. For example, water forms H-bonds and has a molar mass M = 18 and a boiling point of +100 °C, compared to nonpolar methane with M = 16 and a boiling point of –161 °C.
Bifurcated H-bond systems are common in alpha-helical transmembrane proteins between the backbone amide C=O of residue i as the H-bond acceptor and two H-bond donors from residue i + 4: the backbone amide N−H and a side-chain hydroxyl or thiol H +. The energy preference of the bifurcated H-bond hydroxyl or thiol system is -3.4 kcal/mol or -2. ...
A double bond between two given atoms consists of one σ and one π bond, and a triple bond is one σ and two π bonds. [8] Covalent bonds are also affected by the electronegativity of the connected atoms which determines the chemical polarity of the bond. Two atoms with equal electronegativity will make nonpolar covalent bonds such as H–H.
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Hydrogen bonds of the form A--H•••B occur when A and B are two highly electronegative atoms (usually N, O or F) such that A forms a highly polar covalent bond with H so that H has a partial positive charge, and B has a lone pair of electrons which is attracted to this partial positive charge and forms a hydrogen bond.
A hydrogen bond is an extreme form of dipole-dipole bonding, referring to the attraction between a hydrogen atom that is bonded to an element with high electronegativity, usually nitrogen, oxygen, or fluorine. [4] The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction.
Model of hydrogen bonds (1) between molecules of water. A single water molecule can participate in a maximum of four hydrogen bonds because it can accept two bonds using the lone pairs on oxygen and donate two hydrogen atoms. Other molecules like hydrogen fluoride, ammonia, and methanol can also form hydrogen bonds.
A space-filling model of the diatomic molecule dinitrogen, N 2. Diatomic molecules (from Greek di- 'two') are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen (H 2) or oxygen (O 2), then it is said to be homonuclear.