enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The Earth's orbit approximates an ellipse. Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). [7] Its geometric or logarithmic mean ...

  3. Orbital forcing - Wikipedia

    en.wikipedia.org/wiki/Orbital_forcing

    Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).

  4. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).

  5. 100,000-year problem - Wikipedia

    en.wikipedia.org/wiki/100,000-year_problem

    δ 18 O, a proxy for temperature, for the last 600,000 years (an average from several deep sea sediment carbonate samples) [a]. The 100,000-year problem (also 100 ky problem or 100 ka problem) of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over ...

  6. Effect of Sun angle on climate - Wikipedia

    en.wikipedia.org/wiki/Effect_of_Sun_angle_on_climate

    The amount of heat energy received at any location on the globe is a direct effect of Sun angle on climate, as the angle at which sunlight strikes Earth varies by location, time of day, and season due to Earth's orbit around the Sun and Earth's rotation around its tilted axis.

  7. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy.

  8. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Any cooling effect in one hemisphere is balanced by warming in the other, and any overall change will be counteracted by the fact that the eccentricity of Earth's orbit will be almost halved. [17] This will reduce the mean orbital radius and raise temperatures in both hemispheres closer to the mid- interglacial peak.

  9. Season - Wikipedia

    en.wikipedia.org/wiki/Season

    In general, the effect of orbital eccentricity on Earth's seasons is a 7% variation in sunlight received. Orbital eccentricity can influence temperatures, but on Earth, this effect is small and is more than counteracted by other factors; research shows that the Earth as a whole is actually slightly warmer when farther from the sun.