enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    This yields as a special case the well-known formula for the area of a triangle, by considering a triangle as a degenerate trapezoid in which one of the parallel sides has shrunk to a point. The 7th-century Indian mathematician Bhāskara I derived the following formula for the area of a trapezoid with consecutive sides a, c, b, d:

  3. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.

  4. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4 , and should not be confused with the mass moment of inertia .

  5. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula is also a special case of the formula for the area of a trapezoid or trapezium based only on its sides. Heron's formula is obtained by setting the smaller parallel side to zero. Expressing Heron's formula with a Cayley–Menger determinant in terms of the squares of the distances between the three given vertices,

  6. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  7. Tangential trapezoid - Wikipedia

    en.wikipedia.org/wiki/Tangential_trapezoid

    The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)

  8. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a , and BC = b , and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is

  9. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.