enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  3. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    In classical physics diffraction arises because of how waves propagate; this is described by the Huygens–Fresnel principle and the principle of superposition of waves. The propagation of a wave can be visualized by considering every particle of the transmitted medium on a wavefront as a point source for a secondary spherical wave. The wave ...

  4. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    This ensures that if the Laue equations are satisfied, then the incoming and outgoing (diffracted) wave have the same phase at each point of the crystal lattice, so the oscillations of atoms of the crystal, that follows the incoming wave, can at the same time generate the outgoing wave at the same phase of the incoming wave.

  5. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    For example, if two slits are separated by 0.5 mm (d), and are illuminated with a 0.6 μm wavelength laser (λ), then at a distance of 1 m (z), the spacing of the fringes will be 1.2 mm. If the width of the slits b is appreciable compared to the wavelength, the Fraunhofer diffraction equation is needed to determine the intensity of the ...

  6. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    Typical diffraction patterns, for instance the Figure, show spots for different directions (plane waves) of the electrons leaving a crystal. The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the ...

  7. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/.../Dynamical_theory_of_diffraction

    The dynamical theory of diffraction considers the wave field in the periodic potential of the crystal and takes into account all multiple scattering effects. Unlike the kinematic theory of diffraction which describes the approximate position of Bragg or Laue diffraction peaks in reciprocal space , dynamical theory corrects for refraction, shape ...

  8. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    More generally, "waveguide" dispersion can occur for waves propagating through any inhomogeneous structure (e.g., a photonic crystal), whether or not the waves are confined to some region. [dubious – discuss] In a waveguide, both types of dispersion will generally be present, although they are not strictly additive.

  9. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.