Search results
Results from the WOW.Com Content Network
Ventilation–perfusion coupling is the relationship between ventilation and perfusion processes, which take place in the respiratory system and the cardiovascular system. [1] Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation , which delivers oxygen to body tissues. [ 2 ]
In respiratory physiology, the ventilation/perfusion ratio (V/Q ratio) is a ratio used to assess the efficiency and adequacy of the ventilation-perfusion coupling and thus the matching of two variables: V – ventilation – the air that reaches the alveoli; Q – perfusion – the blood that reaches the alveoli via the capillaries
Exchange of gases in the lung occurs by ventilation and perfusion. [1] Ventilation refers to the in-and-out movement of air of the lungs and perfusion is the circulation of blood in the pulmonary capillaries. [1] In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths.
Although total liquid ventilation (TLV) with completely liquid-filled lungs can be beneficial, [9] the complex liquid-filled tube system required is a disadvantage compared to gas ventilation—the system must incorporate a membrane oxygenator, heater, and pumps to deliver to, and remove from the lungs tidal volume aliquots of conditioned perfluorocarbon (PFC).
The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration. [1]
Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy.
The respiratory system (also respiratory apparatus, ventilatory system) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary ...
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.