enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  3. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]

  4. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.

  5. Spectral radius - Wikipedia

    en.wikipedia.org/wiki/Spectral_radius

    The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem. Theorem. Let A ∈ C n×n with spectral radius ρ(A). Then ρ(A) < 1 if and only if =

  6. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    For instance it is not true that if two power series = and = have the same radius of convergence, then = (+) also has this radius of convergence: if = and = + (), for instance, then both series have the same radius of convergence of 1, but the series = (+) = = has a radius of convergence of 3.

  7. Generalized hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Generalized_hypergeometric...

    Excluding these cases, the ratio test can be applied to determine the radius of convergence. If p < q + 1 then the ratio of coefficients tends to zero. This implies that the series converges for any finite value of z and thus defines an entire function of z. An example is the power series for the exponential function.

  8. Abel's theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_theorem

    The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, ) approaches from below, even in cases where the radius of convergence, , of the power series is equal to and we cannot be sure whether the limit should be finite or not.

  9. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    are also analytic, since their defining power series have the same radius of convergence as the original series. Assuming that [a − r, a + r] ⊂ I and r < R, all these series converge uniformly on (a − r, a + r).