enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  3. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...

  4. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  5. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Fitting of linear models by least squares often, but not always, arise in the context of statistical analysis. It can therefore be important that considerations of computation efficiency for such problems extend to all of the auxiliary quantities required for such analyses, and are not restricted to the formal solution of the linear least ...

  6. Fisher's method - Wikipedia

    en.wikipedia.org/wiki/Fisher's_method

    Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0

  7. Partial least squares path modeling - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares_path...

    PLS-PM [4] [5] is a component-based estimation approach that differs from the covariance-based structural equation modeling.Unlike covariance-based approaches to structural equation modeling, PLS-PM does not fit a common factor model to the data, it rather fits a composite model.

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as a polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y , denoted E( y | x ).

  9. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    If use of the damping factor ⁠ / ⁠ results in a reduction in squared residual, then this is taken as the new value of ⁠ ⁠ (and the new optimum location is taken as that obtained with this damping factor) and the process continues; if using ⁠ / ⁠ resulted in a worse residual, but using ⁠ ⁠ resulted in a better residual, then ...