enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    The quintessentially quantum mechanical uncertainty principle comes in many forms other than positionmomentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  3. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...

  4. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.

  5. Conjugate variables - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables

    The linear momentum of a particle is the derivative of its action with respect to its position. The angular momentum of a ... the generalized uncertainty principle ...

  6. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly ...

  7. Coherent state - Wikipedia

    en.wikipedia.org/wiki/Coherent_state

    A coherent state distributes its quantum-mechanical uncertainty equally between the canonically conjugate coordinates, position and momentum, and the relative uncertainty in phase [defined heuristically] and amplitude are roughly equal—and small at high amplitude.

  8. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    Two complementary observables cannot be measured simultaneously; instead they satisfy an uncertainty principle. The more accurately one observable is known, the less accurately the other one can be known. Just as there is an uncertainty principle relating position and momentum, there are uncertainty principles for angular momentum.

  9. Particle in a box - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_box

    This can be explained in terms of the uncertainty principle, which states that the product of the uncertainties in the position and momentum of a particle is limited by It can be shown that the uncertainty in the position of the particle is proportional to the width of the box. [11]