Search results
Results from the WOW.Com Content Network
Cooperative binding occurs in molecular binding systems containing more than one type, or species, of molecule and in which one of the partners is not mono-valent and can bind more than one molecule of the other species. In general, molecular binding is an interaction between molecules that results in a stable physical association between those ...
The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. An example of positive cooperativity is the binding of oxygen to hemoglobin. One oxygen molecule can bind to the ferrous iron of a heme molecule in each of the four chains of a hemoglobin molecule.
Positively cooperative binding: Once one ligand molecule is bound to the enzyme, its affinity for other ligand molecules increases. For example, the Hill coefficient of oxygen binding to haemoglobin (an example of positive cooperativity) falls within the range of 1.7–3.2. [5] <.
Calcium binding by calmodulin exhibits considerable cooperativity, [5] [11] making calmodulin an unusual example of a monomeric (single-chain) cooperative binding protein. Furthermore, target binding alters the binding affinity of calmodulin toward Ca 2+ ions, [ 20 ] [ 21 ] [ 22 ] which allows for complex allosteric interplay between Ca 2+ and ...
The sequential model (also known as the KNF model) is a theory that describes cooperativity of protein subunits. [1] It postulates that a protein's conformation changes with each binding of a ligand, thus sequentially changing its affinity for the ligand at neighboring binding sites.
A select few examples include kinetics of self-catalytic enzymes, cooperative and allosteric enzymes, interfacial and intracellular enzymes, processive enzymes and so forth. Some enzymes produce a sigmoid v by [S] plot, which often indicates cooperative binding of substrate to the active site. This means that the binding of one substrate ...
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
For example, in the context of protein function, the binding of calcium to troponin in muscle cells can induce a conformational change in troponin. This allows for tropomyosin to expose the actin-myosin binding site to which the myosin head binds to form a cross-bridge and induce a muscle contraction .