enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    The term "Z-test" is often used to refer specifically to the one-sample location test comparing the mean of a set of measurements to a given constant when the sample variance is known. For example, if the observed data X 1 , ..., X n are (i) independent, (ii) have a common mean μ, and (iii) have a common variance σ 2 , then the sample average ...

  3. Test statistic - Wikipedia

    en.wikipedia.org/wiki/Test_statistic

    (z is the distance from the mean in relation to the standard deviation of the mean). For non-normal distributions it is possible to calculate a minimum proportion of a population that falls within k standard deviations for any k (see: Chebyshev's inequality). Two-sample z-test

  4. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    One-sided normal tolerance intervals have an exact solution in terms of the sample mean and sample variance based on the noncentral t-distribution. [8] This enables the calculation of a statistical interval within which, with some confidence level, a specified proportion of a sampled population falls.

  5. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    If the statistic is the sample mean, ... distribution when the sample size is over 100. For such samples one can use the latter distribution, which is much simpler ...

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.

  7. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Sampling schemes may be without replacement ('WOR' – no element can be selected more than once in the same sample) or with replacement ('WR' – an element may appear multiple times in the one sample). For example, if we catch fish, measure them, and immediately return them to the water before continuing with the sample, this is a WR design ...

  8. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  9. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample extrema can be used for a simple normality test, specifically of kurtosis: one computes the t-statistic of the sample maximum and minimum (subtracts sample mean and divides by the sample standard deviation), and if they are unusually large for the sample size (as per the three sigma rule and table therein, or more precisely a Student ...