Search results
Results from the WOW.Com Content Network
The nanofocusing technique can create a nanometer-scale "white" light source at the tip apex, which can be used to illuminate a sample at near-field for spectroscopic analysis. The interband optical transitions in individual single-walled carbon nanotubes are imaged and a spatial resolution around 6 nm has been reported. [28]
Piezospectroscopy (also known as photoluminescence piezospectroscopy) is an analytical technique that reveals internal stresses in alumina-containing materials, ...
Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). [1] It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photons that excite electrons to a higher energy level in an atom), hence the prefix photo- . [ 2 ]
where the first contribution, ~, contains the Coulomb-renormalized single-particle energy that is determined by the bandstructure of the solid.The Coulomb renormalization are identical to those that appear in the semiconductor Bloch equations (SBEs), showing that all photon-assisted polarizations are coupled with each other via the unscreened Coulomb-interaction .
Visible CD spectroscopy is a very powerful technique to study metal–protein interactions and can resolve individual d–d electronic transitions as separate bands. CD spectra in the visible light region are generally only produced when a metal ion is in a chiral environment, thus, free metal ions in solution are not detected.
A mass spectrometer used for high throughput protein analysis. Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins.Mass spectrometry is an important method for the accurate mass determination and characterization of proteins, and a variety of methods and instrumentations have been developed for its many uses.
Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. [2] Spectrophotometry uses photometers, known as spectrophotometers, that can measure the intensity of a light beam at different wavelengths.
With fluorescence correlation spectroscopy, one protein is labeled with a fluorescent dye and the other is left unlabeled. The two proteins are then mixed and the data outputs the fraction of the labeled protein that is unbound and bound to the other protein, allowing you to get a measure of K D and binding affinity. You can also take time ...