enow.com Web Search

  1. Ad

    related to: heat loss and gain calculator for pipe

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  3. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The overall heat transfer coefficient takes into account the individual heat transfer coefficients of each stream and the resistance of the pipe material. It can be calculated as the reciprocal of the sum of a series of thermal resistances (but more complex relationships exist, for example when heat transfer takes place by different routes in ...

  4. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.

  5. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...

  6. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    Consider the conservation of mass and momentum for a control volume bounded by cross section 1 just upstream of the expansion, cross section 2 downstream of where the flow re-attaches again to the pipe wall (after the flow separation at the expansion), and the pipe wall. There is the control volume's gain of momentum S 1 at the inflow and loss ...

  7. Glossary of geothermal heating and cooling - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_geothermal...

    A detailed heat loss and heat gain calculation for a building. The calculation takes into account heat transfer to and from the space inside the building to the outside air. It takes into account the construction of the building walls and roof, including insulation values, mass of the structure, orientation of the different components to the ...

  8. Heat flux measurements of thermal insulation - Wikipedia

    en.wikipedia.org/wiki/Heat_flux_measurements_of...

    In-situ thermal insulation measurement according to ASTM C0141, applying a heat flux sensor to a boiler wall. On-site heat flux measurements are often focused on testing the thermal transport properties of for example pipes, tanks, ovens and boilers, by calculating the heat flux q or the apparent thermal conductivity.

  9. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  1. Ad

    related to: heat loss and gain calculator for pipe