enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Strings of nucleotides are bonded to form spiraling backbones and assembled into chains of bases or base-pairs selected from the five primary, or canonical, nucleobases. RNA usually forms a chain of single bases, whereas DNA forms a chain of base pairs. The bases found in RNA and DNA are: adenine, cytosine, guanine, thymine, and uracil. Thymine ...

  3. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...

  4. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    A section of DNA. The bases lie horizontally between the two spiraling strands [15] (animated version). The DNA double helix is stabilized primarily by two forces: hydrogen bonds between nucleotides and base-stacking interactions among aromatic nucleobases. [16] The four bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T).

  5. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    In an aqueous solution, the average persistence length has been found to be of around 50 nm (or 150 base pairs). [43] More broadly, it has been observed to be between 45 and 60 nm [44] or 132–176 base pairs (the diameter of DNA is 2 nm) [45] This can vary significantly due to variations in temperature, aqueous solution conditions and DNA ...

  6. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    The nucleobases are important in base pairing of strands to form higher-level secondary and tertiary structures such as the famed double helix. The possible letters are A , C , G , and T , representing the four nucleotide bases of a DNA strand – adenine , cytosine , guanine , thymine – covalently linked to a phosphodiester backbone.

  7. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]

  8. Intercalation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Intercalation_(biochemistry)

    The degree of unwinding varies depending on the intercalator; for example, ethidium cation (the ionic form of ethidium bromide found in aqueous solution) unwinds DNA by about 26°, whereas proflavine unwinds it by about 17°. This unwinding causes the base pairs to separate, or "rise", creating an opening of about 0.34 nm (3.4 Å).

  9. Hoogsteen base pair - Wikipedia

    en.wikipedia.org/wiki/Hoogsteen_base_pair

    Ten years after James Watson and Francis Crick published their model of the DNA double helix, [2] Karst Hoogsteen reported [3] a crystal structure of a complex in which analogues of A and T formed a base pair that had a different geometry from that described by Watson and Crick. Similarly, an alternative base-pairing geometry can occur for G ...