Search results
Results from the WOW.Com Content Network
The member function erase can be used to delete an element from a collection, but for containers which are based on an array, such as vector, all elements after the deleted element have to be moved forward to avoid "gaps" in the collection. Calling erase multiple times on the same container generates much overhead from moving the elements.
The C++ standard library instead provides a dynamic array (collection) that can be extended or reduced in its std::vector template class. The C++ standard does not specify any relation between new / delete and the C memory allocation routines, but new and delete are typically implemented as wrappers around malloc and free. [6]
The vector maintains a certain order of its elements, so that when a new element is inserted at the beginning or in the middle of the vector, subsequent elements are moved backwards in terms of their assignment operator or copy constructor. Consequently, references and iterators to elements after the insertion point become invalidated. [8]
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
The placement overloads of operator new and operator delete that employ an additional void * parameter are used for default placement, also known as pointer placement. Their definitions by the Standard C++ library, which it is not permitted for a C++ program to replace or override, are: [7] [8] [9]
For example, the expressions anArrayName[0] and anArrayName[9] are the first and last elements respectively. For a vector with linear addressing, the element with index i is located at the address B + c · i, where B is a fixed base address and c a fixed constant, sometimes called the address increment or stride.
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
In the C++ Standard Library, the algorithms library provides various functions that perform algorithmic operations on containers and other sequences, represented by Iterators. [1] The C++ standard provides some standard algorithms collected in the <algorithm> standard header. [2] A handful of algorithms are also in the <numeric> header.