enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    Finally, the angles CME and FMA are the same. Hence, AFM is an isosceles triangle, and thus the sides AF and FM are equal. The proof that FD = FM goes similarly: the angles FDM, BCM, BME and DMF are all equal, so DFM is an isosceles triangle, so FD = FM. It follows that AF = FD, as the theorem claims.

  3. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula. If the semiperimeter is not used, Brahmagupta's formula is

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  5. Alchemical symbol - Wikipedia

    en.wikipedia.org/wiki/Alchemical_symbol

    Alchemical symbols were used to denote chemical elements and compounds, as well as alchemical apparatus and processes, until the 18th century. Although notation was partly standardized, style and symbol varied between alchemists.

  6. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    Euclid proved that the area of a triangle is half that of a parallelogram with the same base and height in his book Elements in 300 BCE. [1] In 499 CE Aryabhata, used this illustrated method in the Aryabhatiya (section 2.6). [2] Although simple, this formula is only useful if the height can be readily found, which is not always the case.

  7. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]

  8. Centered triangular number - Wikipedia

    en.wikipedia.org/wiki/Centered_triangular_number

    The n-th centered triangular number, corresponding to n layers plus the center, is given by the formula:, = + (+) = + +. Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if positive) is the previous regular triangular number.

  9. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid.