Search results
Results from the WOW.Com Content Network
Local search usually works on all variables, improving a complete assignment to them. However, local search can also be run on a subset of variables, using some other mechanism for the other variables. A proposed algorithm works on a cycle cutset, which is a set of variables that, if removed from the problem, makes it acyclic.
The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search . [ 1 ]
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
A related method, called progressive bias, consists in adding to the UCB1 formula a element, where b i is a heuristic score of the i-th move. [37] The basic Monte Carlo tree search collects enough information to find the most promising moves only after many rounds; until then its moves are essentially random.
The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature. As a general guide, if the last few stages of the tour are comparable in length to the first stages, then the tour is reasonable; if they are much greater ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us