Search results
Results from the WOW.Com Content Network
Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider a list of n elements as n sub-lists of size 1. A list containing a single element is, by definition, sorted.
If the running time (number of comparisons) of merge sort for a list of length n is T(n), then the recurrence relation T(n) = 2T(n/2) + n follows from the definition of the algorithm (apply the algorithm to two lists of half the size of the original list, and add the n steps taken to merge the resulting two lists). [5]
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
That value is then popped off, and its leaf is refilled with 7, the next value in the input list. The games on the way to the top are replayed like in the previous section about replacement selection. The next element that is removed is 3. Starting from the next value in the list, 6, the games are replayed up until the root.
For instance, the array might be subdivided into chunks of a size that will fit in RAM, the contents of each chunk sorted using an efficient algorithm (such as quicksort), and the results merged using a k-way merge similar to that used in merge sort. This is faster than performing either merge sort or quicksort over the entire list. [40] [41]
external sorting algorithm. External sorting is a class of sorting algorithms that can handle massive amounts of data.External sorting is required when the data being sorted do not fit into the main memory of a computing device (usually RAM) and instead they must reside in the slower external memory, usually a disk drive.
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
To solve the Lomuto partition scheme problem (sometimes called the Dutch national flag problem [7]), an alternative linear-time partition routine can be used that separates the values into three groups: values less than the pivot, values equal to the pivot, and values greater than the pivot.