Search results
Results from the WOW.Com Content Network
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, [1] and is the primary interaction occurring in ionic compounds.
The "size" of the charge in an ionic bond depends on the number of electrons transferred. An aluminum atom, for example, with a +3 charge has a relatively large positive charge. That positive charge then exerts an attractive force on the electron cloud of the other ion, which has accepted the electrons from the aluminum (or other) positive ion.
Forming an ionic bond, Li and F become Li + and F − ions. An ion (/ ˈ aɪ. ɒ n,-ən /) [1] is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge ...
In chemistry, an ionic crystal is a crystalline form of an ionic compound. They are solids consisting of ions bound together by their electrostatic attraction into a regular lattice . Examples of such crystals are the alkali halides , including potassium fluoride (KF), potassium chloride (KCl), potassium bromide (KBr), potassium iodide (KI ...
An ionic compound is named by its cation followed by its anion. See polyatomic ion for a list of possible ions. For cations that take on multiple charges, the charge is written using Roman numerals in parentheses immediately following the element name. For example, Cu(NO 3) 2 is copper(II) nitrate, because the charge of two nitrate ions (NO −
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions and negatively charged ions , [1] which results in a compound with no net electric charge (electrically neutral).
where z is the electrical charge on the ion, I is the ionic strength, ε and b are interaction coefficients and m and c are concentrations. The summation extends over the other ions present in solution, which includes the ions produced by the background electrolyte. The first term in these expressions comes from Debye–Hückel theory.
The predominant non-covalent interactions associated with each species in solution are listed in the above figure. As previously discussed, ionic interactions require considerably more energy to break than hydrogen bonds, which in turn are require more energy than dipole–dipole interactions. The trends observed in their boiling points (figure ...